手賀沼底質における深度別放射性物質調査(3)

中田利明 井上智博 飯村 晃 行方真優*

(*:元環境研究センター)

1 はじめに

福島第一原子力発電所の事故で放出された放射性物 質は、千葉県北西部に堆積し、2012年に行った調査¹⁾ 等では、手賀沼及びその流入河川の底質で比較的高い 濃度の放射性セシウムが検出された。そこで、手賀沼 底質における放射性セシウムの動態を詳細に把握する ため、深度別の調査を2013年²⁾、2014年³⁾に行った。 その結果、沼西側は、流域に堆積した放射性セシウム が流入してくるため比較的高い濃度の放射性セシウム が堆積していること。放射性セシウムの深度別堆積状 況は地点により異なること。沼東側の放射性セシウム は、沼西側より濃度が低く、表層(深度0~2cm)から 深度約 20cm まで同程度の濃度で堆積していることが 明らかになった。

今回は引き続き,手賀沼内の底質中の放射性セシウ ムの動態を詳細に把握するため,深度別の底質調査を 行ったので報告する。

2 調査方法

調査は2015年8月及び9月に実施した。調査地点は、既報²⁾³⁾と同様に手賀沼内の河川流入河口部2地点と沼内3地点の計5地点とした。(図1)

底質は、離合社製佐竹式コアーサンプラーに内径 53mm×長さ 50cm のアクリルパイプを装着し、各調 査地点で約 2m 程度の間隔をあけて 2 箇所以上で採取 した。採取した底質は、表層から深度 20cm までを 2cm 毎に、それ以上の深度については 5cm 毎に切り分けて 分析試料とし、放射性セシウム濃度(Cs-134,Cs-137)、 強熱減量、粒径分布を測定した。

3 結果と考察

3・1 手賀沼底質中の放射性セシウム濃度

表1に今回及び既報²⁾³における,放射性セシウム が検出された最大深度,検出された放射性セシウムの 最大濃度及びその深度を示す。

手賀沼底質中の放射性セシウムは,前回と同様に深 度が 30cm 以上の位置まで確認された。底質中の放射 性セシウム最大濃度は,いずれの地点も低下していた。 また,前回と同様に,流入河川河口となる沼西側(St.1, St.2, St.3)が沼東側(St.4, St.5)より放射性セシウ ム濃度が高く,流入河川の流域に沈着した放射性セシ ウムの影響が続いていると考えられた。

3・2 各調査地点の深度別放射性セシウム濃度と強 熱減量

各調査地点における採取試料毎の深度別放射性セシ ウム濃度,強熱減量を図2に示す。また、2013年から 2015年における St.1, St.2, St.3 及び St.5(各地点の 放射性セシウム最大濃度)を図3に示す。

3・2・1 沼西側 (St. 1, St. 2, St. 3)

大堀川河口部である St.1 では、表層から深さ 14~ 16cm 層まで比較的高濃度で放射性セシウムが確認さ れた。深度別でもっとも濃度が高かったのは深さ 10~ 12cm 層であり、2014 年調査よりも深い位置になって いた。強熱減量は、深度 16~18cm 層まで約 5%であ り、放射性セシウム濃度が最も高かった 2013 年調査 時より約 15%低くなっていた。

表1に示すように、St.1 では放射性セシウムが最大 濃度を示した層の深さが毎年変化しているが、これは St.1 が大堀川河口部でありことや、底質の強熱減量が 2013 年調査より変化していることから、降雨時などに 大堀川からの流入水量が増加し、深さ 14~16cm 層程 度の底質が沼内下流方向に押し流されているためと考 えられた。さらに、図 2(1)に示すように 2014 年、2015 年にも放射性セシウムが表層に堆積していることから、 側と比べて深度による濃度の差異が小さい状態になっ 新たな放射性セシウムが河川から流入していると考え られた。

大津川河口部である St.2 の放射性セシウムは、深さ 18~20cm 層付近に最大濃度(5,300Bq/kg)を示し, 採取した最も深い層 (35~40cm 層) でも検出された。 また強熱減量は、全ての深度層において採取位置によ るばらつきが見られた。

この結果から, St.2 の底質は St.1 よりも深い位置ま でかく乱が起きて、複雑な堆積状態となっていると考 えられた。

St.3 の放射性セシウムは、表層から深さ 10~12cm 層まで概ね同じ濃度(約4,000Bq/kg)であった。また, 強熱減量は、表層から深さ14~16cm層では10~20% であり採取位置によりばらつきがあった。深さ 16~ 18cm 層以深では、2013 年調査や 2014 年調査と同様 に約10%と安定していた。

この結果から、St.3 では表層から深さ 16~18cm 層 まで、2 つの河口部から流下した底質の影響を強く受 けた堆積状況となっていると考えられた。

3・2・2 沼東側 (St. 4, St. 5)

St.2 から約 2km 離れている St.4 では, 沼西側に比 べて放射性セシウムの濃度が低く、表層から深さ12~ 14cm 層まで概ね同じ濃度(約 700Bq/kg)であった。 また、強熱減量も大きな変化はなく10%以下と比較的 低い数値であった。

St.2 から約 4km 離れている St.5 では, 2013 年調査 に比べ大きな変化は見られず。放射性セシウム濃度は, 表層から深さ 25~30cm 層まで概ね同じ濃度(約 1,000Bq/kg) であった。強熱減量も大きな変化がなく 約16%であった。

沼東側では, 沼西側から下流側に押し流された, 放 射性セシウムを含む堆積物が底質と混ざり合い、沼西

ていると考えられた。また、上述のような現象はSt.5 では深さ約 30cm まで起こっていると考えられた。

3・3 まとめ

手賀沼西側では、大堀川河口部と大津川河口部で放 射性セシウムの堆積状況が異なっていた。また、河口 部底質表層の放射性セシウム濃度は、沼東側の地点に 比べ高い濃度で堆積しており、大堀川や大津川の流域 からの影響は継続していると考えられた。

一方, 沼東側では 2013 年調査から大きな変化が見 られず、これは沼西側から下流側に押し流された放射 性セシウムが、底質と混ざり合い濃度の差異が小さい 状態で沼東側に流下しているためと考えられた。

今回の調査により、手賀沼底質における放射性セシ ウムの堆積状況は年ごとに変化しており、 今後の動態 を予測するには、引き続き深度別調査を行っていく必 要があると考えられた。

引用文献

- 1) 中田利明,藤村葉子,飯村晃,井上智博,横山智子, 小林廣茂, 木内浩一, 栗原正憲, 清水明, 高橋良彦: 手賀沼, 印旛沼及び流入河川底質中の放射性物質 モニタリング調査.第47回日本水環境学会年会講 演集,241 (2012).
- 2) 中田利明,井上智博,飯村晃,横山智子,平間幸雄, 藤村葉子:手賀沼底質における深度別放射性物質 調査. 千葉県環境研究センター年報, 第 13 号 (2014).
- 3) 中田利明, 井上智博, 飯村晃, 横山智子, 藤村葉子: 手賀沼底質における深度別放射性物質調査(2). 千葉県環境研究センター年報,第15号 (2016).

記号	St.1			St.2			St.3			St.4		St.5		
地点名	大堀川河口			大津川河口			根戸下			手賀大橋下流		手賀沼中央		
調査年	2015	2014	2013	2015	2014	2013	2015	2014	2013	2015	2014	2015	2014	2013
放射性セシウムが 検出された層(最深)	18 ~ 20cm	14 ~ 16cm	20 ~ 25cm	35 ~ 40cm	30~32cm	30~35cm	25 ~ 30cm	30~35cm	30 ~ 35cm	18 ~ 20cm	20 ~ 25cm	30 ~ 35cm	25~30cm	30~35cm
放射性セシウム 最大濃度(Bq/kg)	4,210	4,800	19,900	5,300	7,600	11,200	4,280	6,000	9,300	920	1,500	1,320	1,530	1,860
最大濃度を示した層	10 ~ 12cm	4 ~ 6cm	8 ~ 10cm	18 ~ 20cm	18 ~ 20cm	0~2cm	0~2cm	10 ~ 12cm	4 ~ 6cm	4 ~ 6cm	8 ~ 10cm	4~6cm	4 ~ 6cm	6 ~ 8cm

表1 調査結果(検出深度と最大濃度)

図3 2013~2015年調査の経年変化

深度別の強熱減量

強熱減量(%)

強熱減量(%)

- 2013年調査

■ 2014年調査 ■ 2015年調査

Ð

強熱減量(%)

(2)

強熱減量(%)