農産物トレーサビリティへの電子タグ活用について ~RDFによる汎用性を重視したトレーサビリティ用データモデルの構築~

情報システム室 藤丸 耕一郎, 小倉 宏之

About Traceability for Agricultural-Products with RFID

 \sim Design of Data Model by RDF for Traceability which Thought Flexibility as Important \sim

Kouichirou FUJIMARU and Hiroyuki OGURA

今日, 食の安心安全が求められるなか, 農産物トレーサビリティの確立が求められている。また, 新しい動きを見せる電子タグ技術のトレーサビリティ分野への活用も関心を集めている。

本研究では農産物分野を始点とし、トレーサビリティ構築やトレーサビリティへの電子 タグ活用に関する現状・課題を分析するとともに、トレーサビリティのモデル構築や電子 タグの基本特性測定を行っている。

本稿では、トレーサビリティが今後普及するために課題について、次世代インターネット技術として注目されている RDF によるデータモデル構築を提案し、汎用性を重視したトレーサビリティの可能性について検討してみた。

1. はじめに

1.1 背景

情報処理機器や高速なブロードバンド利用,携 帯電話網との連携普及等により,インターネット は情報共有基盤としての位置づけを益々強くして いる。

また,情報共有を実装するための様々な関連技 術が提案・利用されている。

情報共有基盤としてのインターネットを活用し た新しいトレーサビリティのモデルを提案する。

1.2 汎用トレーサビリティ基盤構築の目的

工業製品や農産物,加工食品など,生産管理・ 品質管理等を目的に,生産や加工に関する履歴情 報を蓄積し,追跡(検索)できる「トレーサビリテ ィ」システムは,今日様々な業界で実施・実験が 行われているが,それらの多くは,対象を特定し ている。また,システムとしては統合サーバを利 用し,対象とする生産物に特化したデータ構造を 専用に設計している。

従来の方法では,特定の対象物に対して確実な システム構築は可能であるが,

1)システム構築コスト負担のかたより
2)データ構造のフレキシビリティ低下
等が課題となる。そこで、

a)特定の対象に特化しない。

b)特定のサーバに特化しない。

c) データ構造に柔軟性がある。

なトレーサビリティ基盤のモデルを構築する。

2. トレーサビリティ基盤モデル構築

2.1 トレーサビリティ定義

トレーサビリティ基盤モデルを構築するにあた り,基本を以下の様に定義する。

「蓄積された情報から,特定の客体に関する情報 を全て抽出し,主体の連鎖関係及び時系列によっ て整列された情報を得る。」

2.2 トレーサビリティ空間

2.1の定義に基づき,実際の物の移動を記号 化し,情報としてインターネット等のサーバに保 存・検索する基盤モデルを構築する。モデルの検 討においてトレーサビリティに関する事象(トレ ーサビリティ空間)を,図1に示すように,「物理 空間(Physical Space)」・「論理空間(Logical Space)」・「サーバ空間(Server Space)」の3つに 分類した。

RFID や 2 次元バーコード等は, 論理空間と物 理空間を結びつける一つの手段として利用する。

本モデルでは、論理空間における個々の移動事

象情報は、サーバ空間の特定サーバに限定されず 任意のサーバに保存される事を最終的な目的とし ている。

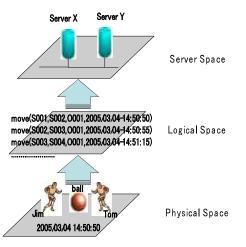


図1 トレーサビリティ空間

- 2.3 基本機能
 - モデルが主として実現する機能は,
 - 1)物の移動を登録する。

2)物の移動履歴を検索する。

の2つである。

実装モデルの検討をしやすくするために、「1) 物の移動を登録する。」を以下のように表した。

【物の移動事象】

Ss move O to Sr at T.

Ss: この事象において、物を送る主体
Sr:この事象において、物を受け取る主体
O:この事象において、移動される客体(物)
T:この事象が発生する時間

「2)物の移動履歴を検索する」機能は、上によっ て蓄積された情報から、検索対象となる客体(O) に関する情報を全て抽出し、各事象の「 $Ss \rightarrow Sr$ 」 の連鎖関係及び「T」によって整序された情報を 得る事である。

- 今回の試作では以下のように実装した。
- mt_move(Ss, Sr, O, T)
- mt_trace(O)

Ss:移動事象の主たる(送り手)主体 Ss:移動事象の受け手としての主体 O:移動事象の対象となる客体 T:移動事象の発生した時刻

2.4 基本データ構造

本モデルでは,サーバ空間では分散したサーバ に各情報が保存される事を目標としている。 インターネット空間における分散された情報と いう点を考慮し,基本データ設計では,RDF (Resource Description Framework)を用いた。

RDF によって表現された本モデルで基本となる情報単位の一部を図2に示す。



図2 RDFによる基本モデル(一部抜粋)

3. サーバ空間への実装

3.1 機能構成

本モデルを実装するにあたり,アーキテクチャ を図3のように4層に分類した。

図3 アーキテクチャ図

最も下位の Metadata 層は,基本グラフ構造や, 実際に使用されるコード体系,時刻表現などが規 定される。Management 層は,下位層の情報を直 接蓄積したり検索する機能を持つ。さらにその上 の Aggregation 層は,データの発見方法や得られ たデータの信頼性検証などを行う。最も上位の Application 層は、本モデルを用いた実際の応用部 分となり、Agent 利用等が期待される。データの 機密や整合性・品質に関する機能は、各層の機能 連係によって実現される。

3.2 実装構成

今回,機能提供側は WebService による実装を 行った。また,機能利用側は Java による簡易な クライアント機能を実現した。

4. 検討

4.1 課題

断片となっている個々の履歴情報がサーバ空間 内のどのサーバに存在するのか発見する技術が必 要であり,情報発見のための INDEX サーバを構 築する方法や,履歴情報の連鎖関係を活用する方 法等が考えられる。

4.2 発展性

今回のモデルでは,対象が不変であったが,分割して複数になったり結合するなど,多様化する 対象へもモデルを対応させたい。

5. まとめ

今回のモデルは,現在のトレーサビリティシス テムの有する課題対応への方向性を示すことがで きたと考える。

また,このモデルの発展により Agent 等を活用 した,「トレーサビリティ情報」による新しいビ ジネスモデルの可能性もあると考える。

情報発見手法や,対象の多様性への対応,セキ ュリティへの対応等,システム構築を継続したい。