試験研究成果普及情報

部門 土壌・肥料 対象 普及

課題名:県内耕地土壌の実態-土壌モニタリング調査とりまとめ結果-(2巡目)

[要約] 平成 16 ~ 20 年度の県内農耕地の土壌化学性は平成 11 ~ 15 年度に比べて、水田では加里及びリン酸が減少、野菜畑ではリン酸が増加、野菜施設では石灰、苦土及び加里が減少している。ビワ・ミカン園及びナシ園では加里及び苦土の過剰な調査地点が多い。

フリーキーワード 土壌、土壌調査、土壌化学性、土壌診断

実施機関名 主 査 農林総合研究センター・生産環境部・土壌環境研究室

協力機関 各農林振興センター

実施期間 2004年度~2008年度

[目的及び背景]

農業の生産基盤である農耕地土壌は営農活動等を通じて変化する。平成 11 ~ 15 年度に 実施された土壌モニタリング調査(1 巡目)によって、県内農耕地土壌の実態を明らかに した。 1 巡目から 5 年後となる平成 16 ~ 20 年度に、 1 巡目と同一の地点を調査する 2 巡 目調査を実施し、 5 年後の土壌化学性の変化を明らかにする。

「成果内容]

- 1 水田では1巡目調査に比べて、加里及びリン酸が減少した(表 1-1 及び表 1-2)。 診断基準値と比較した場合、調査地点の38%でリン酸が、56%でケイ酸が不足していた(図 1)。
- 2 1 巡目調査に比べて、普通畑 (イモ以外) では石灰、苦土、加里及び窒素含量が増加し、イモ畑では加里及びリン酸が減少した。
- 3 野菜畑では1巡目調査に比べてリン酸が増加したものの、黒ボク土を中心に59% の調査地点でリン酸が不足していた。
- 4 ビワ・ミカン園及びナシ園では1巡目に比べて加里が減少したものの、加里及び苦土は70%以上の調査地点で過剰であった。
- 5 野菜施設では1巡目調査に比べて石灰、苦土及び加里が減少し、これらの養分が過剰の調査地点割合は30%以下であった。
- 6 1巡目調査に比べて花施設では変化がなく、花き畑では石灰及びリン酸が増加した。 [留意事項]

ここに示した土壌化学性及びその変化は県内の平均値であり、個々の圃場については 個別に土壌診断することが必要である。

「普及対象地域〕

県内全域

[行政上の措置]

[普及状況]

「成果の概要]

表 1-1 土地利用別の土壌化学性平均値(その1)

土地利用	地点数	рΗ	全窒素	全炭素	CEC	交換性陽イオン(mg/100g)		
77.25/19/19		(水)	(%)	(%)	(me/100g)	石灰	苦土	加里
水田	98	6.6	0. 190	2.11	19. 0	305	64. 3	17.6 ↓
普通畑(代以外)	22	6. 2	0.350	4. 43	29. 1	376 ↑	35. 2 ↑	53.8 ↑
イモ畑	11	6.3	0. 337	4. 45	27. 9	308	40.8	32.6 ↓
野菜畑	98	6.5	0. 259	3.03	26. 7	416	58. 2	61. 2
ビワ・ミカン園	12	5.8	0. 366	3. 95	33. 4	524 ↓	101.3	78. 2 ↓
ナシ園	36	6.3	0. 367 ↑	4. 12	33. 2	469	66.6 ↓	74.1 ↓
野菜施設	56	6.6	0. 226	2. 32	21. 5	366 ↓	69.3 ↓	60. 7 ↓
花施設	31	6.6	0. 263 ↑	2.98	25. 0	547	91. 7	71. 2
花き畑	5	7.4	0. 237	2.64	19.9 ↓	652 ↑	53. 2	85. 2

注)平成11~14年度のモニタリング 1 巡目調査に比べて10%以上増加したものを ↑、10%以上減少したものを ↓ で示した

表 1-2 土地利用別の土壌化学性平均値(その2)

土地利用	陽イオン 飽和度	可給	遊離 酸化鉄	
	(%)	リン酸	窒素 ケイ	酸 (%)
水田	76. 1	8.1 ↓	14. 6 11. 4	1.8
普通畑(任以外)	56. 0 ↑	13. 2	6.4 ↑ −	_
イモ畑	49. 0	6.3 ↓	3.1 -	_
野菜畑	71. 2	39. 2 ↑	8.0 —	_
ビワ・ミカン園	76. 1	45.3 ↓	19.3 ↑ -	_
ナシ園	65. 2 ↓	70.3 ↑	14.4 —	_
野菜施設	82.8 ↓	128.8	15.8 —	_
花施設	102. 2	99. 2	11.4 —	_
花き畑	139. 0 ↑	291.3 ↑	7.4 —	_

注)表1-1と同じ

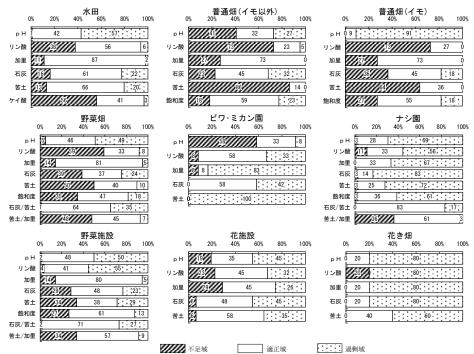


図1 土壌診断基準値からみた不足域、適正域及び過剰域の調査地点の割合 注1)リン酸及びケイ酸は可給態成分、加里、石灰及び苦土は交換性成分、飽和度は陽イオン飽和度を示す 2)土壌診断基準値は「主要農作物等施肥基準」(平成21年3月)p22~24を参照のこと

[発表及び関連文献]

- 1 県内耕地土壌の実態と管理対策 -土壌モニタリング調査とりまとめ結果(1巡目) (平成16年度試験研究成果普及情報)
- 2 平成 21 年度試験研究成果発表会 (作物部門、野菜部門、果樹部門)

[その他]

農林水産省土壌保全対策事業「課題名:土壌機能実態モニタリング調査」