ヒラメ養殖に関する研究— V 放養密度の違いが成長・歩留りに及ぼす影響について

中村 勉・高橋哲夫・早川弘和

はじめに

ヒラメは底生性魚類であるため,これを水槽で養殖 するにあたっては,限られた面積を有効に利用しなく てはならない。それには,適正な放養量を明らかにす ることが必要である。

しかし、これに関する研究がみあたらない。そこで 筆者らは放養密度を面積率からみた試験を行なったと ころ、二、三の知見を得たので報告する。

材料と方法

(1) 供試魚

昭和59年7月に千葉県裁培漁業センターで生産された人工種苗(0才魚)を入手し、市販総合ビタミン剤(5%)を添加したカタクチイワシ(生餌)で12ヶ月間飼育した平均全長22.1cm(範囲17.8~25.4cm)、平均体重170g(範囲90~267g)の大きさのものを用いた。

(2) 試験区および放養量

放養密度別の試験区は、水槽底面積の有効利用の観点から、ヒラメの投影面積が占める割合(以下面積率)で、それぞれ、50、100、200%を目安として設定した。表1に各試験区の面積率と放養量および供試魚の大き

表1 試験区別面積率および放養重量

 項	F	ы	単	試	験	区	
	R .	B		位	1 区	2 区	3 区
飼育	水槽	底面	積	(m_s)	1.3	1.3	1.3
魚包	投	影面	積	(cm²)	128	128	116
放養	魚体	総面	馩	(m^2)	0.6	1.2	2.7
放	養 直	積	率	(%)	46	92	208
放	養	尾	数	(尾)	50	96	232
平	均	全	長	(cm)	22.1	22.1	20.8
平	均	体	重	(g)	200	180	130
放	養	重	量	(kg)	10.0	17.1	30.0
放	養	密	度()	(g/m²)	8.0	13.0	23.0

放養面積率= <u>放養無体総則領</u> ×100

さを示した。

なお、魚体投影面積は、各区について平均体長に相当する供試魚の1尾を選び、個体の投影面積を求めた。 その魚体投影面積に放養尾数を掛けて各区あたりの放 養魚体総面積とし、これを水槽底面積で割って放養面 積率とした。

(3) 供試餌料と給餌量

供試餌料は、冷凍カタクチイワシで、解凍後、市販 総合ビタミン剤を5%添加し、丸のまま放養魚体重(10

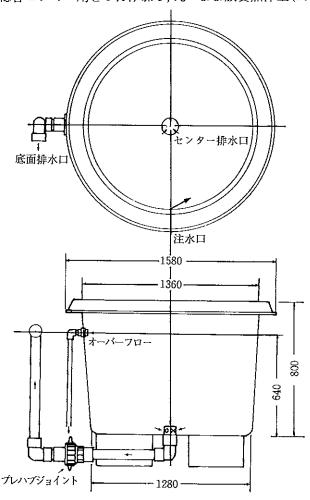


図1 飼育水槽 (→印は注・排水方向を示す)

~30kg) の5%を毎日午後2時頃1回与え,翌日残餌を回収した。

(4) 飼育水槽

試験に使用した飼育水槽は、FRP製の円型養魚槽 (直径1.36m,底面1.28m,水深64cm)で、水量は0.9 トンである。

飼育海水は、当場地先から揚水して沪過した海水を用い、各水槽に時間当り1.0~1.3トンで、換水率は25~34^{回転}/_日であった。

飼育水の給排水方法は、図1に示したとおり、水槽 壁面にそって注水し飼育水を回転させ、水槽底面中央 部から排水した。

(5) 魚体測定

供試魚の魚体測定は、試験開始時と終了時に各区の 総重量と尾数を、同時に各区から任意に選んだ30尾に ついて全長、体重を測定した。

また、試験中4週ごとに、各区の総重量と尾数を計 測して平均体重と歩留りを求めた。

(6) 水質環境

水質環境の測定は,試験開始時と終了時および4週 ごとの魚体測定日に各区の塩分量,溶存酸素量,注水 量等を測定した。

また、水温は毎日午前10時に測定した。

(7) 試験期間

試験をおこなった期間は、1985年7月22日から同年 11月11日までの113日間である。

結果と考察

ヒラメの放養密度を面積率からみた飼育結果を表 2 に、113日間の総合飼育結果を表 3 に、また、成長を図 2 に示した。

(1) 成長について

各試験区の成長を平均増重率でみると、放養面積率

表2 終了時における試験区別面積率および 取り上げ重量

	, ,				
	— Я	単	試	験	区
匁	Н	位	1 区	2 区	3 区
飼育水	槽底面積	(m ²)	1.3	1.3	1.3
魚体投	と 影 面 積	(cm²)	266	266	236
取り上げ	寺魚体総面積	(m²)	0.4	2.6	5.3
取り上げ	产時面積率	(%)	31	200	408
取り上	げ時尾数	(尾)	15	96	225
平均	全 長	(cm)	31.0	31.0	27.6
平 均		(g)	350	360	220
取り上	げ時重量	(kg)	5.3	34.5	49.6
取り上	げ時密度(kg/m²)	4.0	27.0	38.0

表3 飼育試験結果

項 目 単	試	験	区
位	1区	2 区	3 区
飼育期間	1985 • 7 • 22~11 • 11		
飼育日数(日)	113	113	113
放 養 尾 数 (尾)	50	96	232
取り上げ時尾数 (尾)	15	96	225
尾 数 歩 留 り (%)	30	100	97
放 養 時 重 量 (kg)	10.0	17.1	30.0
取り上げ時重量 (kg)	5.3	34.5	49.6
增 重 量 (kg)	-4.7	17.4	19.6
補 正 増 重 量 (kg)	11.6	17.4	50.8
放養時平均体重 (g)	200	180	130
取り上げ時平均体重 (g)	350	360	220
平 均 増 重 量 (g)	150	180	90
平均增重率(%)	75	100	69
投 餌 量 (kg)	41.4	108.9	175.2
残 餌 量 (kg)	16.3	14.3	34.1
補 正 投 餌 量 (kg)	25.1	94.6	141.1
飼料 効率(%)	※185	73	144
増 肉 係 数	2.2	5.4	2.8
日間給餌率(%)	2.2	4.9	4.2
日間成長率(%)	0.13	0.59	0.43

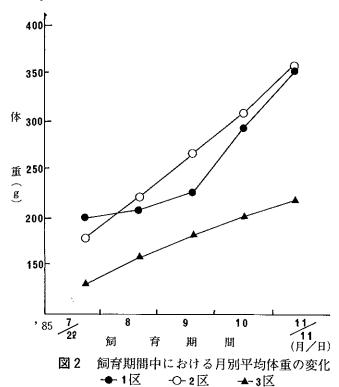
※乾物換算值

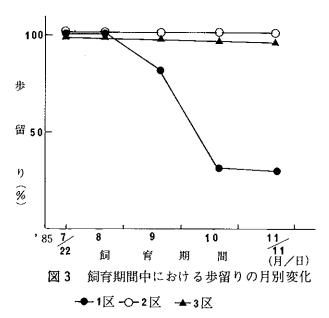
92%の2区が最大の100%となり,次いて46%の1区で75%, 208%の3区で69%となった。

飼育終了時の面積率は、1区で開始時46%から終了時で31%に減少し、2区で92%から200%に、3区では208%から408%に増大し、収容時面積率を100%とした取り上げ面積率の割合は、それぞれ67、217、196%となった。

放養時面積率のもっとも低い1区の成長量が,放養 重量で約1.7倍を収容した2区より低く,取り上げ時面 積率も減少したことは,飼育中の疾病による摂餌量の 減少とへい死が生じたものである。

試験区ごとの成長結果は、2区>1区>3区の順となった。


(2) 歩留りについて

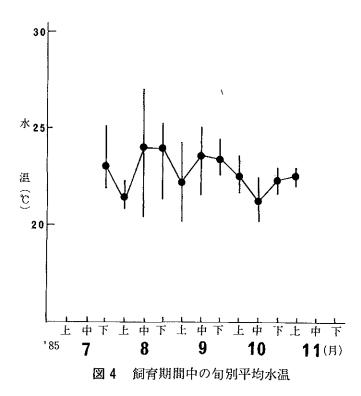

4 週ごとに測定した本試験の歩留りを図 3 に示した。 それによると、全期間を通じての歩留りは、1 区が30 %、2 区が100%、3 区が97%であった。

2区と3区は、水槽底面を完全にヒラメ個体が占有 し、個体が重り合い部分的には、3~4層になってい たにもかかわらず97%以上の歩留りを示した。

また、1区の歩留り低下原因として考えられることは、高橋ら¹¹が報告しているものと同様の潰瘍症状が見られたことである。すなわち、9月上旬より有眼側

体表面に2~3ケ所の潰瘍が見られ始め、その患部が 除々に拡大した。そしてこれにともない摂餌が不良と なり、へい死個体の出現で低い歩留りを示したもので ある。

(3) 摂餌状況と環境


飼育期間中の摂餌活動は、1区は全搬的に不活発であった。2区および3区は、放養開始後3日程度まったく、摂餌行動を示さなかったが、その後は多少浮上して摂餌する個体が見られるようになった。

7月下旬~8月中旬の水温20~23℃では全ての個体が活発に浮上摂餌していたが、8月下旬~9月上旬の

表4 飼育期間中における注・排水口で測定した溶存酸素量の変化

 		水温	塩 分	水量	溶存酸素量	
測定年•月•日	試験区	(L)	(S%)	交換回数	O₂cc/ℓ	飽和度%
1985.7.25	1区※(注) 〃(排) 2区(注) 〃(排) 3区(注) 〃(排)	21.8	33.965	28回/日 28回/日 25回/日	4.91 4.31 4.94 4.26 4.94 3.67	94 83 95 82 95 70
8 .19	1区(注) 〃(排) 2区(注) 〃(排) 3区(注) 〃(排)	26.4	33.710	30回/日 32回/日 30回/日	4.62 4.16 4.40 4.08 4.04 3.55	95 86 91 84 83 73
9 .17	1区(排) 2区(排) 3区(排)	23.8	34.250	31回/日 31回/日 34回/日	4.45 4.42 4.10 3.92 3.81 3.35	90 89 83 79 77 67
11.11	1区(注) 〃(排) 2区(注) 〃(排) 3区(注) 〃(排)	22.0	34.623	28回/日 31回/日 25回/日	4.92 4.72 4.58 4.12 4.02 3.71	95 91 88 79 77 71

※(注)=注水口, (排)=排水口

水温24℃以上では一般に不活発となり, 摂餌量も減少 した。飼育期間中の旬別平均水温の変化は図4に示し た。

飼育期間中に各区について,注排水口での酸素量の 変動を測定した結果を表4に示した。

これによると期間中の排水口でみた酸素量は、1区で4.16~4.72^{CC} $/\ell$ 、2区で3.92~4.26^{CC} $/\ell$ 、3区で3.35~3.71^{CC} $/\ell$ であり、3区で他区と比べ酸素量が少なくなっていた。すなわち、収容量の多い3区での消費がめだった。

高橋²¹ によれば、ヒラメの平均全長14cmのときの酸素 致死限界は2.14^{CC}/ℓくらいと報じていることから,今 回の実験魚の大きさに違いがあるが、収容量のもっと も多い3区で3.35~3.71^{CC}/ℓであったことからすれば、 各区の酸素量は供試魚の飼育に支障がない量だと考え られる。

以上を総合すると、この試験1区を徐外して考えると放養面積率 $92\%(13^{kg}/m^2)$ 、取り上げ時面積率 $200\%(27^{kg}/m^2)$ の飼育区がもっとも良かった。

しかし、千葉水試³の報告によれば、夏期高水温(26~27℃台)が17日間続くとへい死率が高くなるといわれている。したがって高水温時は疾病の発生を考え放養面積率50%(10^{kg}/㎡)前後におさえ、また、10月以降の水温低下期に放養面積率100%(13~15^{kg}/㎡)程度の放養量がもっとも良いものと推定される。

適正放養密度を決定する条件は種々あると思うが,

特に注水量や水深等の関係を加味しなければならない と思うので、今後その辺を追究したい。

要 約

1985年7月22日から同年11月11日にわたる113日間, ヒラメの放養密度を面積率からみた試験を行なった。

- 1) 成長を試験区ごとに比較すると,取り上げ時の平均増重率は放養面積率46%の1区では75%,面積率92%の2区では100%を示し,また,面積率208%の3区で69%であった。高密度飼育の3区より,2区の方が良い傾向を示した。
- 2) 歩留りについては、2区では100%、3区では97% と高歩留りを示したが、1区では30%と低く、こ れは飼育途中に潰瘍によるへい死の出現が多くな ったためである。

したがって1区を徐外して考えると,面積率92% $(13^{kg}/m^{2})$ の放養量がもっとも増重がよく,歩留りも優れていた。

文 献

- 1) 高橋哲夫・早川弘和(1985): ヒラメ養殖に関する研究-Ⅲ. 飼料魚種の違いが成長, 歩留りに及ぼす影響について. 千葉水試研報. 43, 59-63.
- 2) 高橋哲夫 (1985) :酸素封入によるヒラメ幼魚の 耐久力について (未発表).
- 3) 千葉水試(1985): ヒラメ海面いけす養殖試験結果報告書.