# 焼却灰埋立地における浸出液の経時変化について そのII

中山 和好 成富 武治 小室 芳洵 吉田 豊

# Studies on Quality of Leachat from Incinearated Residue Tips - II

### Kazuyoshi NAKAYAMA, Takaharu NARITOMI, Yoshinobu KOMURO and Yutaka YOSHIDA

#### I はじめに

前報(千葉衛研報告 第三号 1979年)に引き続き1981 年2月までの調査結果を報告する。

#### II 調査方法

調査項目と分析方法は表-1に記した。なお浸出液の採水地点が、浸出液処理施設完成により1980年3月から、集水管末端の仮貯留槽より沈砂池出口に変更された。沈砂池は埋立場出口に設置されている。

表-1. 調査項目と分析方法

| 調査項目                                    | 分析方法         |  |  |  |  |  |
|-----------------------------------------|--------------|--|--|--|--|--|
| pH,酸消費量(pH5),全蒸発残留物,                    |              |  |  |  |  |  |
| BOD, COD, フェノール類, n-へキ                  |              |  |  |  |  |  |
| サン抽出物質,フッ素イオン (F-),                     |              |  |  |  |  |  |
| 全シアン(T-CN), カドミウム(Cd),                  | JIS K0102 に準 |  |  |  |  |  |
| 鉛 (Pb), 六価クロム (Cr <sup>6+</sup> ), T-Cr | 拠            |  |  |  |  |  |
| (全クロム), ヒ素(As), 亜鉛(Zn),                 |              |  |  |  |  |  |
| 銅 (Cu), 鉄 (Fe), マンガン (Mn),              |              |  |  |  |  |  |
| カルシウム,硫酸イオン                             |              |  |  |  |  |  |
| 全窒素 (ケルダール窒素), アンモニ                     |              |  |  |  |  |  |
| ア性窒素, 塩素イオン, 全リン酸, 大                    | 下水試験法        |  |  |  |  |  |
| 腸菌群数                                    |              |  |  |  |  |  |
| 有機リン, アルキル水銀 (Ar-Hg),                   | 環境庁告示        |  |  |  |  |  |
| 総水銀(T-Hg), PCB, 浮遊物質(SS)                | ·祝·兄/] 口 小   |  |  |  |  |  |
| アルブミノイド性窒素 総硬度                          | 衛生試験法        |  |  |  |  |  |
| 硝酸イオン                                   | サリチル酸法       |  |  |  |  |  |

千葉県衛生研究所 (1981年10月6日受理)

#### III 埋立状況

埋立量は78.12~81.2 の間95,227t, 月平均3,527t であり, 埋立開始より142,946t になった。埋立場は1980年に埋立終了の予定であったが,まだ満杯となっておらず埋立が可能となっている。浸出液の処理施設は1979年10月に完成,12月より送水し処理を行なっている。

#### IV 結果

図-1に pH, 図-2に酸消費量, 全リン酸の変化を示 した。pH は7.8~9.0、酸消費量は19.7~4.1eam、全リ ン酸は $0.54\sim2.53$ mg/lであった。図-3にBOD, COD の変化を示した。BODは18.3~958.0 mg/l, CODは 35.8~288.0mg/lであり徐々に減少してきている。BOD/ COD 値も0.4~2.4と小さくなってきており、埋立が採水 地点より遠くへと進められるにつれ、微生物分解を受け る時間が長くなっているためと思われる。図-4に窒素 化合物の変化を示した。ケルダール窒素は135.0~24.0 mg/l, アンモニア性窒素は $116.0\sim20.0\,mg/l$ , アルブミノ イド性窒素は $12.1\sim1.4\,\text{mg}/l$ の値で変化した。図-5は 全蒸発残留物, 塩素イオンの変化で, 全蒸発残留物は 18,700~3,570 mg/l,塩素イオンは9,360~1,860 mg/lの間 で変化し、塩素イオンはまだ高い濃度を示す。図-6に 硬度、硫酸イオン、カルシウムの変化を示した。硬度は  $1,430.0 \sim 170.0 \,\text{mg}/l$ , 硫酸イオンは $422.0 \sim 65.0 \,\text{mg}/l$ . カ ルシウムは $392.0 \sim 56.0 \,\text{mg}/l \,\text{であった}$ 。

重金属、その他の項目については表-2のとおりである。有害項目では、Pbが0.05mg/lを記録したのみである。他の金属の中では前報と同様、溶解性マンガンが高値を示している。(なお不検出とは定量下限値以下とし、その値はPb0.04mg/l, Cd0.01mg/l,  $Cr^6$ +0.04mg/l, T-Cr0.04mg/l, As0.05mg/l, T-Hg0.0005mg/l, Ar-Hg0.0005mg/l, T-CN0.02mg/l, T-CN0.02mg/l

## 千葉衛研報告 第5号 89-93 1981年

 $\ell$ ,  $F^-0.2 \, \text{mg}/l$ ,  $n-\alpha$  キ抽出物質  $1 \, \text{mg}/l$  および  $NO_3$   $-1 \, \text{mg}/l$ ) この期間, 埋立が採水地点より奥へと進められており, 微生物分解を受ける時間が多くなったこと, またこれまでに埋め立てられた灰の微生物分解, 雨水による洗い出し等による安定化も加わり, 全体的にどの項目も濃度は

減少傾向を示している。

(なお,この埋立地浸出液の処理に関しては,第31回 廃棄物処理対策全国協議会1980年度,大阪にて発表した。)

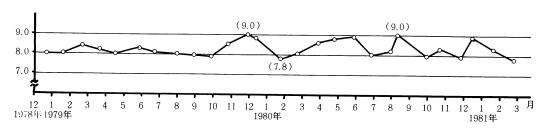



図-1. pH の 変 化

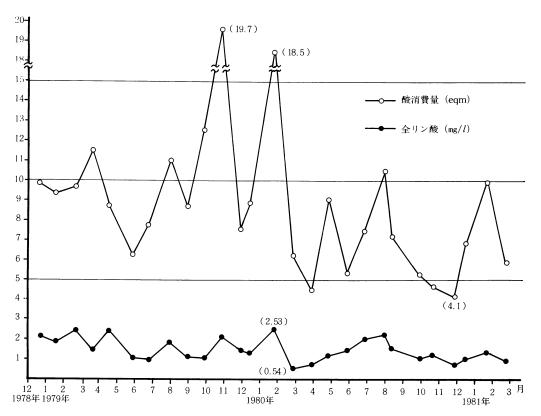



図-2. 酸消費量,全リン酸の変化

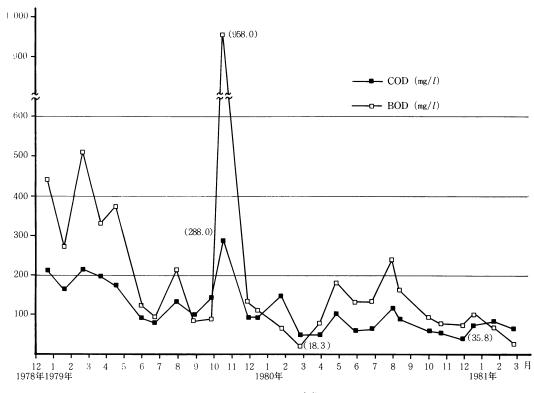



図-3. BOD, COD の変化

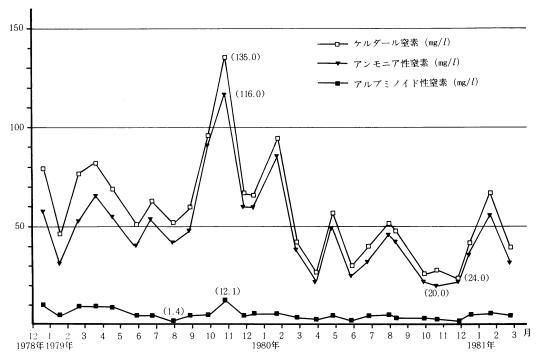



図-4. 窒素化合物の変化

## 千葉衛研報告 第5号 89-93 1981年

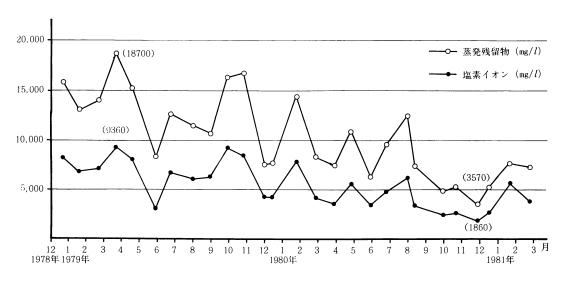



図-5. 全蒸発残留物,塩素イオンの変化

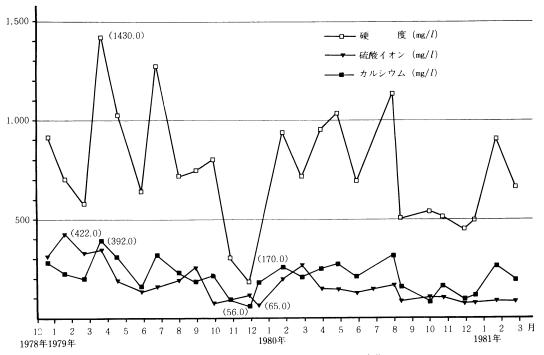



図-6. 硬度、硫酸イオン、カルシウムの変化

## 焼却灰埋立地における浸出液の経時変化について

表-2. 重金属、その他の項目の変化

|                   | 1979年<br>1月 | 3 月  | 5月   | 7月   | 9月   | 11月  | 1980年<br>1月 | 3 月  | 5月   | 7月   | 9月   | 11月  | 1981年 |
|-------------------|-------------|------|------|------|------|------|-------------|------|------|------|------|------|-------|
| Pb                | 0.05        | -    | _    | _    | -    | _    | _           | -    | _    | -    | -    | -    | _     |
| Cd                | _           | -    | _    | _    | -    | _    | _           | _    | _    | _    | _    | _    | _     |
| Cr <sup>6+</sup>  | -           | -    | -    | _    | _    | _    | _           | -    |      | -    | -    | _    | _     |
| T-Cr              | -           | _    | _    | _    | _    | _    | -           | -    | -    | -    | -    |      | _     |
| As                | _           | _    | _    | _    | -    | _    | _           | _    | -    | -    | _    | _    | _     |
| T-Hg              | _           | _    | -    | _    | _    | _    | -           | _    | _    | _    | 1    | _    | _     |
| Ar-Hg             | -           | _    | _    | -    | _    | _    | _           | -    | _    | -    | -    |      | _     |
| T-CN              | _           | _    | _    | _    | _    |      | _           | _    | ı    |      | -    |      | _     |
| 有機リン              | -           | _    | _    | _    | _    | -    | -           | -    |      |      | _    | _    | -     |
| PCB               | _           | _    | _    | -    | _    | _    | _           | _    | _    | -    |      | _    | _     |
| Zn                | 0.05        | 0.03 | 0.03 | 0.08 | 0.17 | 0.02 | -           | 0.06 | 0.03 | 0.02 | 0.03 | _    | 0.04  |
| Cu                | 0.22        | 0.02 | ı    | 0.08 | _    | _    | _           | 0.05 | _    | _    |      | _    | _     |
| Fe                | 2.20        | 1.68 | 3.36 | 2.72 | 1.85 | 0.45 | _           | 0.11 | 1.31 | 1.50 | 2.84 | 2.49 | 1.77  |
| 溶解性 Fe            | 0.43        | 0.13 | 0.27 | 0.29 | 0.13 | 0.12 |             | _    | _    | 0.08 | 0.32 | -    |       |
| Mn                | 1.02        | 5.04 | 3.68 | 1.68 | 3.74 | 0.10 | 4.10        | 2.96 | 4.20 | 5.40 | 3.00 | 1.72 | 4.40  |
| 溶解性 Mn            | 0.96        | 4.88 | 2.84 | 1.52 | 2.24 | 0.10 | 4.00        | 2.56 | 3.80 | 4.20 | 2.92 | 1.48 | 4.00  |
| フェノール類            | 1.0         | 1.2  | 0.4  | 0.8  | _    | 0.3  | _           | _    | 0.3  | 1.5  | _    | _    |       |
| F-                | 0.6         | 0.5  | 0.5  | 0.4  | 1.9  | 0.5  | 0.3         | 0.4  |      | 0.1  | _    | 0.2  | 0.4   |
| n-ヘキ抽出物質          | 3           | 2    | 8    | 8    | _    | 5    | -           | _    | _    | 8    |      | _    | 2     |
| 大腸菌群数(個/ml)       | 65          | 2600 | 151  | 180  | 33   | 0    | 11          | 768  | 58   | 580  | 2500 | 460  | 1100  |
| SS                | 23.0        | 15.2 | 31.3 | 32.4 | 18.7 | 41   | 13.6        | 23.4 | 25.4 | 56.0 | 22.4 | 23.0 | 31.7  |
| NO <sub>3</sub> - | _           | _    | _    | _    | _    |      |             | _    | _    | _    | _    | _    | _     |

- 不検出 (mg/l)