3.2.6 三次元グリッドモデルの作成

これまでの検討を元に、木村ほか(2014)²²に基づき、今回新たに収集したデータを含 む約6万本のボーリングデータを用いて、全県で50m メッシュのボクセルモデル*を作成 した。このモデルをもとに、地震動については250m メッシュ地盤モデル、液状化につい ては東京湾沿いの埋立地について50m メッシュモデル、それ以外の地域で250m メッシュ モデルを作成した(代表的な断面図を図 3-16~19に示した)。50m メッシュモデルについ ては、その三次元構造を可視化するとともに、将来的には地震動についても250m メッシ ュより細かいモデルが作成できるような仕様で作成した。

図 3-16 作成した断面図の位置(千葉市美浜区)

^{*}ボクセルモデル:水平方向及び深度方向に等間隔なモデル。本調査における 50m メッシュモデルは、水 平方向(x、y方向)が 50m、鉛直方向(z方向)が 1m のボクセルモデルである。

図 3-17 地盤モデル断面図(250m メッシュ・千葉市美浜区・左:土質断面図・右:速度断面図)

46

50m メッシュモデル

47

50m メッシュモデル

48

3.2.7 地盤モデルの物性値の設定

作成した浅部地盤モデルについて、地震応答計算のために必要な物性値の設定を行った。 土質区分層構造モデルを速度区分層構造モデルに変換するために必要な S 波速度 Vs は、 砂質土及び粘性土については、永田ほか(2007)²³による千葉市内の N 値と S 波速度との以 下の関係式を用いて設定した(千葉県 2008)。

 $Vs = a \cdot N^b \cdot Dep^c - (\vec{x} 3-1)$

ここに、

N:N値

Dep:地表からの深さ(m)

a~*c*:以下に示す土質毎の係数

土質名	а	b	С
埋立粘性土	81.2	0.211	0.221
埋立砂質土	93.8	0.178	0.000
沖積粘性土	116.9	0.188	0.055
沖積砂質土	103.5	0.089	0.158
洪積粘性土	125.5	0.145	0.137
洪積砂質土	163.4	0.183	0.029

礫質土については中央防災会議(2001)²⁴による以下の関係式を用いて設定した。

 $Vs = a \cdot N^b \cdot c \cdot d - (\ddagger 3-2)$

ここに、

N:N値

a~*d*:以下に示す土質毎の係数

土質名	а	b	С	d
沖積礫質土	112.73	0.256	1.000	1.000
洪積礫質土	112.73	0.256	1.223	0.885

密度については、中央防災会議(2001)による値を用いた(表 3-3)。

				密度	S波速度(m/s)		動的	
時代	土質	記号	N値	(g/cm3)	係数a	係数b	係数c	記号
完新統	盛土	B1	0~4	1.60	116.9	0.188	0.055	Bc
		B2	4~10	1.70	116.9	0.188	0.055	Bc
		B3	10~	2.00	116.9	0.188	0.055	Bc
	埋立十	F1	0~4	1.60	97.1	0.146	0.059	Bs
	· <u> </u>	F2	4~10	1.70	97.1	0.146	0.059	Bs
		F3	10~	2.00	97.1	0.146	0.059	Bs
	腐植十	Ap1	0~1	1.20	116.9	0.188	0.055	Ap
		Ap2	1~	1.30	116.9	0.188	0.055	Ap
	泥	Ac1	0~2	1.40	116.9	0.188	0.055	Ac
	<i>"</i> c	Ac2	2~4	1.50	116.9	0.188	0.055	Ac
		Ac3	4~8	1.60	116.9	0 188	0.055	Ac
		Ac4	8~15	1.00	116.9	0.188	0.055	Ac
		Ac5	15 ~ 30	1.80	116.9	0.188	0.055	Ac
		Ac6	30~	1.80	116.9	0.188	0.055	Ac
	砂質十	Am1	0~2	1.40	116.9	0.188	0.055	Ac
	₩ A T	Am2	2~4	1.50	116.9	0.188	0.055	Ac
		Am3	4~8	1.60	116.9	0.188	0.055	Ac
		Am4	8~15	1.00	116.9	0.188	0.055	Ac
		Am5	$15 \sim 30$	1.0	116.9	0.188	0.055	Ac
		Am6	30~	1.80	116.9	0.100	0.055	Ac
	石心		0~4	1.00	103.5	0.100	0.000	As
	~	As2	4~10	1.70	103.5	0.000	0 158	<u>As</u>
		<u>As3</u>	$\frac{10}{10} \sim 30$	1.00	103.5	0.000	0.150	<u>As</u>
		As4	$30 \sim 50$	1.00	103.5	0.000	0.158	As
		As5	50~	1.00	103.5	0.000	0.158	As
	石継	Δn1	~ 20	1.00	101 457	0.000	0.100	0.7
	РЖ	Ag2	$20 \sim 30$	2.00	101.457	0.256	0.000	<u> </u>
		Ag2	30 ~ 50	2.00	101.457	0.256	0.000	<u> </u>
		An4	50~	2.00	101.457	0.256	0.000	<u> </u>
	庭植十	Dn1	0~1	1 20	125.5	0.145	0.000	<u> </u>
× 391/100	闷阻工	Dp2	1~	1.30	125.5	0.145	0.137	An
	ローム	DI1	0~4	1.40	125.5	0.145	0.137	Dc
		DI2	4~	1.50	125.5	0.145	0.137	Dc
	泥	Dc1	0~2	1.50	125.5	0.145	0.137	Dc
	<i>"</i> c	Dc2	2~4	1.60	125.5	0.145	0.137	Dc
		Dc3	4~8	1.70	125.5	0.145	0.137	Dc
		Dc4	8~15	1.80	125.5	0.145	0.137	Dc
		Dc5	15~30	1.80	125.5	0.145	0.137	Dc
		Dc6	30 ~	1.80	125.5	0.145	0.137	Dc
	砂質土	Dm1	0~2	1.50	125.5	0.145	0.137	Dc
		Dm2	2~4	1.60	125.5	0.145	0.137	Dc
		Dm3	4~8	1.70	125.5	0.145	0.137	Dc
		Dm4	8~15	1.80	125.5	0.145	0.137	Dc
		Dm5	15 ~ 30	1.80	125.5	0.145	0.137	Dc
		Dm6	30 ~	1.80	125.5	0.145	0.137	Dc
	砂	Ds1	0~4	1.80	163.4	0.183	0.029	Ds
		Ds2	4~10	1.80	163.4	0.183	0.029	Ds
		Ds3	10 ~ 30	1.90	163.4	0.183	0.029	Ds
		Ds4	30 ~ 50	1.90	163.4	0.183	0.029	Ds
		Ds5	50 ~	2.00	163.4	0.183	0.029	Ds
	礫	Dg1	~ 20	1.90	124.082	0.256	0.000	g
		Dg2	20~30	2.00	124.082	0.256	0.000	g
		Dg3	30 ~ 50	2.00	124.082	0.256	0.000	g
		Dg4	50 ~	2.10	124.082	0.256	0.000	g
	岩	RW	50 ~	1.80	300.0	0	0	-
		R	50 ~	1.80	300.0	0	0	-
	下総層群	SL1	50 ~	1.80	300.0	0	0	-
		SL2	50 ~	1.80	350.0	0	0	-
		SL3	50 ~	1.85	400.0	0	0	-
	上総層群	KZ1	50 ~	1.85	400.0	0	0	-
		KZ2	50 ~	1.90	500.0	0	0	-

表 3-3 地震応答計算のための物性値(中央防災会議 2001)

3.2.8 東北地方太平洋沖地震の再現計算による地盤モデルの検証

今回作成した浅部地盤モデルについて、その妥当性を検証することを目的として、東北 地方太平洋沖地震における千葉県内の観測波形を収集し、収集した波形を用い作成した浅 部地盤モデルにおいて地震応答解析を行い、地表震度分布の再現を行った。再現計算の手 順は、以下の通りである。

収集した観測地点の加速度波形を浅部地盤モデルを用いて工学的基盤への引き戻し計 算を行い、観測地点における工学的基盤での加速度波形を求めた。

で得られた基盤加速度波形から基盤最大加速度を求め、これを空間的に補間して、工 学的基盤での 250m メッシュ最大加速度の分布を求めた。空間補間については、防災科 学技術研究所川崎ラボラトリー(2007)²⁵によるプログラム"rasmo"を用いた。

工学的基盤上での 250m メッシュ加速度波形を作成した。波形の時刻歴については、 250m メッシュから最も近い地震観測点で得られたの波形を採用し、振幅を調整して、

で求めた最大加速度と一致するようにした。

で得られた工学的基盤の地震動を 250m メッシュ地盤モデルに入射して、応答計算* により地表地震動を求めた。

地表の震度分布と気象庁及び自治体による観測点の計測震度を比較すると概ね近い値が 得られており(図 3-20、21)、今回作成した地盤モデル及び地盤の応答解析については、 概ね妥当であると考察され、新たに作成した浅部地盤モデルの妥当性が確認された。

^{*(}地震)応答計算:基盤層に入力した地震波形が、地盤をどのように伝播して地表ではどのような波形 として出力されるかを、数値シミュレーションにより行う計算。 地盤のモデル化手法などにより、いくつかの手法がある。

図 3-20 地震応答計算により求めた東北地方太平洋沖地震の地表地震動と気象庁及び自治体による地震観測点の地震動との比較 (左:最大加速度・右:震度)

図 3-21 地震応答計算により求めた東北地方太平洋沖地震の計測震度と 気象庁及び自治体による地震観測点の計測震度の比較